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Network theory, as emerging from complex systems science, can provide critical predictive power for
mitigating the global warming crisis and other societal challenges. Here we discuss the main differences
of this approach to classical numerical modeling and highlight several cases where the network approach
substantially improved the prediction of high-impact phenomena: 1) El Niño events, 2) droughts in the
central Amazon, 3) extreme rainfall in the eastern Central Andes, 4) the Indian summer monsoon, and
5) extreme stratospheric polar vortex states that influence the occurrence of wintertime cold spells in
northern Eurasia. In this perspective, we argue that network-based approaches can gainfully complement
numerical modeling.

climate phenomena | forecasting | network theory | climate networks

If societies are able to anticipate disruptive events,
they can take measures to save thousands of lives and
to avoid billions of economic costs (1–5). A most evi-
dent, globally disruptive event is certainly the current
COVID-19pandemic.Eventhoughitseemsimpossible
to accurately predict the emergence of such a virus
itself, the pandemic bears several characteristics that
are also shared by other disruptions: The general risk
of something like this happening was known before,
but economic and societal preparations to limit harm-
ful impacts are strongly dependent on a credible,
science-basedwarning,preferablywithsignificanttime
before the event or at least before its full unfold-
ing (the spreading, in the case of a virus) and with
specifications of foreseeable impacts. Such a warning
is not always possible, but there are promising new
avenues. Here, we describe our perspective on this
research challenge from the point of view of network
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theory and its usefulness for better understanding and
for forecasting specific climate phenomena.

Relevant climate phenomena that have the poten-
tial to produce major disruptions in societies are, for
instance, the El Niño phenomenon, the Indian summer
monsoon,andextremeweatherpatterns likepersistent
heatwaves,coldspells,orrainstormsasassociatedwith
stallingplanetaryRossbywaves (6).For instance,apop-
ular saying in India—that the “true finance minister” is
themonsoon—isbasedonthefact thatwater resources
are vital for India, where the rural economy accounts
for about 45% of GDP (7). El Niño occurrences are well
knownfor theirglobal impactsonweatherpatternsand
therefore societies. Floods and heatwaves, especially
concurring with droughts, directly affect humans and
nature, and can wreak havoc in agriculture. Beyond
the climate system, highly challenging events of a
disruptive nature are large-magnitude earthquakes,
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outbreaks of epidemics, and, on the individual level, physiological
disasters like heart attacks. These phenomena often emerge with
little precursory signal or no warning time at all, making effective
adaptation challenging, if not impossible. The pertinent lack of
predictive power, however, is not surprising, since most of those
high-impact events are generated by complex systems composed
of many nonlinearly interacting entities.

In the case of weather and climate, forecasting relies predomi-
nantly on numerical models (8). Starting with Richardson (9) in the
1920s, it has been a long way to the first successful prediction
(10) in 1950 and, eventually, to the highly sophisticated general
circulationandEarthsystemmodelsof today (11).Thesesimulators
rely on initial conditions (especially for weather forecasts, i.e.,
the prediction of atmospheric dynamics for up to 2 wk) and
boundary conditions (which are more relevant for seasonal and
longer-ranging forecasts, involving slower climate components
like the oceans) and deliver very good forecasts for a broad
range of physical quantities. However, their predictive power for
certain climate phenomena beyond the weather timescale can be
rather limited: The dependence on precise initial and boundary
conditions and the necessity to simplify, inherent to any modeling
approach, as well as the chaotic nature of the system under study
will hit hard limits to further improvement (12, 13).

Despite multiple efforts toward seamless prediction, a gap re-
mains in prediction skill between the subseasonal weather forecast
and seasonal and longer climate predictions. Near-term climate
prediction is one of the Grand Challenges of the World Climate Re-
search Program (14). There have also been other significant efforts
in this domain, for instance, with the subseasonal to seasonal (S2S)
prediction project (15, 16). But, in many cases, numerical modeling
still does, and also might continue to, leave vulnerable societies
with insufficient warning time ahead of climate phenomena, within
as well as outside of the above mentioned gap: There are types of
climate phenomena that still notoriously elude reliable long-term
forecasting through numerical modeling. For five specific climate
phenomena examples discussed below, network theory has led to
(in some cases) considerably earlier forecasts compared to state-
of-the-art operational forecasts (SI Appendix, Table S1).

Here we argue that the predictability limitations of existing
operational forecasts are partly due to the basic intention of
numerical models: the goal of faithfully mirroring the local nature
of direct interactions in the physical world. However, the models
are not perfect mimicries of nature. Processes, for example, tur-
bulence, are not resolved at all or only at a possibly insufficient
resolution, and tuned parametrizations have to be employed (17).
In particular, teleconnections present in observational data may be
notwell representedorevenabsentwithinnumericalmodels.Thus,
identifying and then analyzing the evolution of teleconnections
with time can provide an additional avenue to predicting large-
scaleclimatephenomena.Thebeginningsofthispromisingavenue
canbetracedbacktoSirGilbertWalker(18) intheearly20thcentury,
when he first noticed teleconnections, and has now gained a new
and much broader perspective through the advent of complex
network analyses.

Here we suggest that the evolving interactions (manifesting,
e.g., via correlations) between different and often rather distant
locations can provide new insights and serve as predictors for a
large variety of climate phenomena. The philosophy behind this
approach is that, even in a simple system, composed, for instance,
of two coupled nonlinear oscillators, one will observe aleatoric
behavior providing very limited information when measuring the
motion of each oscillator individually. However, when evaluating

the coupling between them, for example, via synchronization [as
already detected in the 17th century by Christiaan Huygens (19)],
one will obtain new and valuable information about the system
(20). Analogously, while one might not necessarily extract useful
information from measurements of single locations on the globe,
the links, for example, the interactions between the sites and their
evolution in time, can provide, as in the examples below, critical
novel information for forecasting.

Network Analysis Opens a Second Avenue
Consequently, we propose to complement the established state
of the art for predicting climate phenomena through explicit
numerical modeling by the maturing approach of network theory
(21–23). The idea is to obtain additional information about the
climate system by capturing the connectivity of different locations
(including long-distance ones), through measuring the similarity in
the evolution of their physical quantities. This similarity between
different locations (nodes) can be quantified by different linear and
nonlinear measures like Pearson correlation, event synchroniza-
tion, mutual information, transfer entropy, partial correlations, or
Granger causality. For an overview of the different methods, see
refs. 24 and 25.

The similarity is then translated into links connecting the nodes
in the network and measuring cooperativity, that is, the property
of not acting independently of each other. Commonly, cutoff
thresholds are applied on these similarity measures to select only
the statistically significant links. These thresholds can be obtained
by analyzing surrogate data, for example, shuffled versions of the
original time series or synthetic time series that match the relevant
statistical properties of the original time series. For more details
on surrogate methods, see refs. 24 and 25. For an illustration of a
network framework, see Fig. 1.

The final network can be represented by an adjacency (connec-
tivity) matrix A, which encodes the links between the nodes or their
absence and is defined as

Aij =

{
non-zero, if there is a link from node j to node i

0, otherwise
.

The value of the element Aij represents the weight of the link.
Links connecting nodes to themselves are not included; that is,
Aii = 0. If the links are not directed, then the adjacency matrix is
symmetric,Aij = Aji. However, links can also be defined as directed
links, with a starting node j and a target node i. For instance, in the
case of correlation-based links, a direction can be defined via the
sign of the time lag of the cross-correlation function. When links
are directed, A is generally nonsymmetric, Aij �= Aji.

The thus obtained adjacency matrix allows the calculation of
network quantities like in- and out-degrees, clustering coefficients
or betweenness coefficients of nodes. For a detailed description
of these and other network quantities, see refs. 21 and 22. Many
of these quantities, which represent topological features of the
network, have a physical interpretation. For example, it was found,
by analyzing advection–diffusion dynamics on model background
flows, that a high absolute flow velocity coincides with a high node
degree, that is, a high number of links attached to a node (26).

While teleconnections can be emerging properties in dynamical
models, which mainly concentrate on data at specific grid cells and
their immediateneighbors, thebasisof thenetworkapproach is the
direct analysis of the links between grid points of a large variety
of distances and their temporal evolution. This approach avoids
the necessity of mimicking the entire climate system, enabling the
forecasters, instead, to pursue specific questions about particular
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Fig. 1. The climate network framework as a tool for prediction. Observational data of physical quantities, for example, temperatures, are available at
different geographical locations. These data can be used directly or via a reanalysis (numerical weather model) which assimilates and maps them onto a
regular grid. Thus, for each node (observational site or reanalysis grid point) of the climate network, a time series of the regarded physical quantity is
available. Cooperativity between nodes can be detected from the similarity in the evolution of these time series and translated into links connecting the
corresponding nodes. The links or their strengths may change with time. These nodes and their links constitute the evolving climate network, which can
be represented by the adjacency (connectivity) matrix A. The analysis of this network can enable early predictions of climate phenomena and provide
insights into the physical processes of the Earth system. For example, for forecasting El Niño, the nodes are in the Pacific, and the links are between the
El Niño basin (full red circles) and the rest of the tropical Pacific (open blue circles). The rising of the network’s mean link strength S (red curve) above a
certain threshold Θ serves as a precursor (green arrows) for the start of an El Niño event (blue areas) in the subsequent calendar year (32). Observation
sites and Climate network analysis images are reprinted with permission from ref. 32.

nonlocal phenomena. Since network-based prediction schemes
often rely only on assessing the current state of the regarded
system, measurement errors play a much smaller role for them than
for numerical models, where small errors in the initial conditions
can lead to exponentially increasing errors in the prediction, as can
be the case for weather forecasting (8, 27).

In contrast to, for example, online social networks, where the
existence of the structure is already known and subject to direct
analysis, the existence and structure of networks in the climate
context is often not obvious—they can be purely functional. In
this respect, climate networks are comparable to networks in
neuroscience, where the structural networks of synapses can be
different from the functional network derived from the connectivity
of time series, for example, EEG measurements (28).

In the following, we focus on forecasting, and highlight several
caseswheretheclimatenetwork (24,29–31)approachsubstantially
improved the prediction of high-impact climate phenomena: 1)
El Niño events (32–38), 2) droughts in the central Amazon (39),
3) extreme rainfall in the eastern Central Andes (40, 41), 4) the
Indian summer monsoon (42–44), and 5) extreme stratospheric
polar vortex (SPV) states (45, 46).

For most of these climate network-based analyses, the initial
motivation was to better understand and describe the regarded
climate phenomena and not primarily the discovery of a new fore-
casting method, which often happens serendipitously. Generally,
there is currently no recipe to follow to surely obtain a network-
based prediction algorithm for a specific climate phenomenon or
to rule out that a network approach can address the phenomenon.
However, complex networks provide ideal tools for data explo-
ration to uncover spatial and temporal patterns in the data that
can later potentially be explained with domain knowledge about
the phenomenon, leading to new physical insights. When this is
the case, as for some of our examples below, then the discovered
relationships may enable the development of new forecasting
methods, which, at this point, could be entirely detached from the

original climate network-based analyses that led to their discovery.
However, network-based quantities can potentially also serve
as direct predictors in a forecasting algorithm if the underlying
processes are not yet identified, as is the case in our first example.

El Niño
El Niño events (47–49) are part of the El Niño–Southern Oscillation
(ENSO), the most important driver of interannual global climate
variability. ENSO can be perceived as a self-organized dynamical
see-saw pattern in the tropical Pacific Ocean–atmosphere system,
featuring rather irregular warm (“El Niño”) and cold (“La Niña”)
excursions from the long-term mean state.

The existing operational El Niño predictions have been es-
pecially limited by the so-called spring barrier, obscuring the
anomaly’s onset until about 6 mo before its beginning (49, 50). In
contrast, the climate network-based prediction method can cross
this barrier and roughly double the prewarning time to about 1 y
ahead (32). For example, in September 2013, the method fore-
casted the onset of an El Niño event in 2014 with 75% probability,
and, based on this, a warning was issued (33). The forecast turned
out to be correct, as an extreme El Niño event started in 2014 (51)
and ended in 2016. For comparison, in December 2013, that is, 3
mo after the network-based forecast, the most far-reaching plume-
based forecast of the International Research Institute for Climate
and Society/Climate Prediction Center predicted a neutral event
with 46% probability, an El Niño with 44%, and a La Niña with 10%
for August–September–October 2014 (52).

This successful prediction was based on a detailed analysis of
the meteorological connectivity of locations inside the so-called El
Niño basin with locations distributed across the rest of the Pacific
(32). This analysis area was chosen since the evolution of the ENSO
takes place across the Pacific. Previous studies (30, 53) had found
that theconnectivityusuallydropsstronglyduringanElNiñoevent.
Accordingly, the cooperativity has to increase before an event, and
this feature serves as the basis for the early prediction.
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To obtain a measure for the cooperativity, the approach builds
ondaily surfaceatmospheric temperaturesatgridpoints (“nodes”)
in the tropical Pacific (see the map in Fig. 1), obtained from
a reanalysis (54). The time evolution of the links between the
temperature nodes inside the “El Niño basin” (14 nodes) and the
nodes outside the basin (193 nodes) is analyzed. The strengths of
these 2,702 links are derived from the magnitudes of the lagged
cross-correlation functions between the temperature time series
at the corresponding sites. For further details, see the original
publications (32, 33). The rising of the network’s mean link strength
S above a certain threshold Θ serves as a precursor for the start of
an El Niño event in the subsequent calendar year. This empirical
threshold was optimized using a learning phase (1950–1980), and
the approach’s skill was tested in a hindcasting phase (1981–2011);
see Fig. 2 A and B. Fig. 2C compares the prediction accuracy
of the network approach via a receiver operating characteristic
(ROC) analysis with the 6- and 12-mo forecasts based on dynamical
climate models (55, 56). Based on this analysis, the network
approach considerably outperforms conventional 6-mo and 1-y
forecasts through dynamical modeling. The method was tested
andvalidated, forexample,bydiscarding80%ofthenodesoutside
the El Niño basin randomly, leading to about the same prediction
performance, and by randomly (block) shuffling the data to obtain
statistical error estimates for the observed performance of the
method (32).

The network approach has proven its operational skill not merely
in hindcasting but also in forecasting since it was introduced in
2012: Between 1981 and 2020, that is, after the learning phase,
the El Niño onset predictions are correct to 73%, and the no-
show predictions are correct even to 89%; see Fig. 2. Based
on random guessing with the climatological average El Niño
occurrence probability, the corresponding P value is 5.8 · 10−5

and, for the forecasting phase alone, p = 0.029 (eight out of nine
forecasts were correct).

The question of which physical processes generate the coop-
erative mode and how they are related to the El Niño buildup
is still open and offers interesting new research opportunities.
Possible answers lie in an understanding of the Walker circulation
as a synergetic phenomenon, of slow oceanic Rossby waves, or
of oceanic turbulence structures. The relationship between the
cooperative mode and the El Niño buildup should also be present
in dynamical models, which makes this relationship a useful test
criterion for a model’s ability to accurately reflect the underlying
mechanisms.

Climate network-derived quantities have also shown predictive
skill for El Niño/ENSO in other studies (34–38, 57) and show that
an upcoming El Niño provides early warning signals, which can be
picked up by suitable climate networks.

Predicting Droughts in the Central Amazon
Droughts have severe impacts on ecosystems all around the globe.
They increase tree mortality and the risk of wildfires, which threaten
forests in addition to ongoing large-scale deforestation. The Ama-
zon rainforest has experienced several extreme droughts in the last
decades, during which the rainforest temporarily turned from a car-
bonsinktoacarbonsource (58).Morepersistentandmorefrequent
droughts in the Amazon increase the risk of a large-scale transition
from rainforest to savanna (59). A dieback of the rainforest would
shift this ecosystem from a carbon sink into a carbon source (60).

Although the tropical Atlantic Ocean is the main source of
moisture inflow into South America (61), it has long been thought
that droughts in the Amazon basin are dominantly caused by El
Niño events and associated longitudinal displacements of the
atmospheric Walker circulation. Only more recently, it has been
suggested that sea surface temperature (SST) anomalies in the

A

B

C

Fig. 2. The El Niño forecasting algorithm; updated figures from the original publication (32). (A and B) The mean link strength S(t) (red curve) of the
climate network (Fig. 1) is compared to a decision threshold Θ (horizontal line, here Θ = 2.82) (left scale) with the Oceanic Niño Index (ONI) (right scale).
The ONI is defined as the 3-mo running mean of the SST anomalies in the Niño3.4 area in the Pacific (pink rectangle in Fig. 1). When the link strength
crosses the threshold from below outside of an El Niño episode, an alarm is given, and the start of an El Niño in the following calendar year is predicted.
El Niño episodes (when the ONI is above 0.5 ◦C for at least 5 mo) are shown by blue areas. A shows the learning phase 1950–1980, where the decision
threshold was optimized. In B, the threshold obtained in A is used to hindcast and forecast El Niño episodes. The hindcasting and forecasting phases are
separated by a dashed vertical line. Correct predictions are marked by green arrows, and false alarms are marked by dashed arrows. The index n marks
unpredicted El Niño episodes. The lead time between a correct alarm and the beginning of the El Niño episodes is 1.01 ± 0.28 y, while the lead time to
the maximal Niño3.4 value is 1.35 ± 0.47 y (32). (C) The prediction accuracy (ROC-type analysis). In a ROC analysis, the hit rate (the number of correctly
predicted events divided by the total number of events) is plotted against the false alarm rate (the number of false alarms divided by the number of
nonevents). The figure compares the performance of the network-based method (forecasting and hindcasting phase, 1981–2020; see B) with the 6- and
12-mo forecasts based on climate models (55, 56). In contrast to ensemble methods, the network-based “ROC-curve” is a single point, since, by
construction, the method does not allow arbitrarily increasing of the hit rate at the expense of increasing the false alarm rate. The black dashed line
shows the diagonal corresponding to random predictions. Adapted figures with permission from ref. 32.
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tropical Atlantic Ocean could provoke hydrological extremes in
the Amazon as well (62).

Based on this hypothesis, a complex network was applied to
identify oceanic regions with a strong impact on Amazon rainfall.
By introducing a bivariate network approach (39), it was possible
to reveal the two regions in the tropical Atlantic Ocean where
SST anomalies have the strongest impact on seasonal-scale rainfall
anomalies inthecentralAmazon(Fig.3AandB).Thespatialpattern
revealed with this network-based data analysis is then explained
in terms of the relevant atmospheric and oceanic processes. It was
shown, in ref. 39, that the development of an SST dipole between
these regions in the northern and southern tropical Atlantic and
associated latitudinal shifts of the Intertropical Convergence Zone
lead to large-scale droughts in the central Amazon.

The analysis of the correlation structure between SST anomalies
in the two identified tropical Atlantic regions reveals clear early
warning signals for droughts in the Amazon (Fig. 3C). A drought
warning is issued once the correlation turns significantly negative,
indicatingthebeginningofthedevelopmentofthetropicalAtlantic
SST dipole. Based on this scheme, six out of the seven most severe
droughts in the central Amazon that occurred during the last four
decades were successfully hindcasted at lead times between 12
and 18 mo.

Extreme Rainfall in the Eastern Central Andes
During the core season of the South American monsoon from De-
cember through February, the eastern slopes of the Central Andes
are frequently affected by extreme rainfall events. These events
can lead to floods and landslides with devastating socioeconomic
impacts, but, until the development of the network approach (40,
41), no early-warning scheme had been proposed.

Complex networks were again used as a data exploration
method to reveal patterns that might be useful for prediction when
combined with mechanistic insights. The spatiotemporal structure
of those extreme rainfall events (above the 99% percentile), as
inferred from high-resolution satellite data, can be mapped onto a
directedandweightednetwork:The linkweightsbetween twogrid
points are a measure for how often two grid points show a time-
delayed, significantly similar precipitation event pattern, and the
direction is determined by the temporal sequence of the events.
The resulting network allows for identifying the source and the
sink regions of extreme precipitation across the South American
continent. SI Appendix, Fig. S1 shows that the Intertropical Con-
vergence Zone and the northern Amazon are a source of extreme
events, while the central parts of South America are sink regions of
extremes.

Surprisingly, the network approach reveals that the exit region
of the low-level monsoonal wind flow in southeastern South
America turns out to be a source area of extreme rainfall events.
The directed network structure allows the inference that events
occurring there tend to be followed by further events along a
narrow band extending northwestward to the Bolivian Central
Andes, and thus in theoppositedirectionof the low-levelmonsoon
circulation. Combining the results of this data exploration with pro-
cess knowledge reveals the mechanisms underlying these extreme
events and opens the door for prediction. A detailed analysis of
the atmospheric conditions exhibits that not the rainfall systems
themselves, but rather the atmospheric conditions that favor the
developmentof largeconvectivesystemsandthus lead toextreme
rainfall, propagateagainst thedirectionof themonsooncirculation
(41). These atmospheric conditions are determined by westward-
moving Rossby wave trains that originate from the southern Pacific

A

C

B

Fig. 3. Drought prediction analysis based on correlation structure of SST anomalies in the northern and southern tropical Atlantic Ocean. (A and B)
Cross degree between SSTs and continental rainfall anomalies. For each SST grid cell of the Atlantic and Pacific Ocean, the cross degree toward rainfall
in the Central Amazon Basin (blue box) is shown, for (A) positive and (B) negative correlations. Darker shading indicates a larger cross degree, implying
a larger number of links, and thus significant correlations with rainfall at more grid points in the Central Amazon Basin. Red areas outline coherent
oceanic regions with the 20% highest cross degrees. Strong positive correlations are present between Central Amazon rainfall and the southern Pacific
ocean (SPO) SSTs as well as southern tropical Atlantic ocean (STAO) SSTs. Strong negative correlations can be inferred, in contrast, for the central Pacific
ocean (CPO) and the northern tropical Atlantic ocean (NTAO). (C) Early warning signal for droughts in the Central Amazon Basin. The time evolution of
the average cross-correlation of the northern and southern tropical Atlantic Ocean (blue) is compared with the standardized precipitation index (SPI,
orange) of the Central Amazon Basin. Negative SPI anomalies with SPI < −1.5 (red dashed line) indicate severely dry periods. A drought event is
predicted within the following one and a half years whenever the average cross-correlation between the SST anomalies falls below an empirically
found threshold of -0.06. Green circles indicate a matching prediction, with one false alarm in 2002 indicated by a gray circle, where the threshold is
crossed but no drought took place in the direct aftermath. The temporal evolution of the average cross-correlation shown here is smoothed using a
Chebyshev type-I low-pass filter and cutoff at 24 mo. Reproduced with permission from ref. 39.
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Ocean and turn northward after crossing the southern tip of the
continent. The interaction of the pressure anomalies embedded
on these Rossby wave trains with the warm, moist monsoon flow
from the tropics leads to the propagation of extreme rainfall from
southeastern South America northwestward to the Central Andes.

The thus gained knowledge establishes a forecasting rule for
extreme rainfall in the eastern Central Andes based on two precon-
ditions,namely,1)strongrainfall insoutheasternSouthAmericaand
2) an anomalously deep low-pressure system over northwestern
Argentina. With a lead time of 2 d, this forecast rule correctly
predicts 60% (and 90% during El Niño conditions) of the extreme
rainfall events in the eastern Central Andes (41). Note that these
60% true positives correspond to a Heidke Skill Score of 0.47 and
thus clearly outperform a random forecast, for which this score
would yield a value of zero. The better prediction skill during El
Niño conditions can be explained by the fact that the atmospheric
patterndescribedabove,basedonwhichtheforecastrulehasbeen
established, occurs more often, and more concisely, during these
episodes.

Teleconnections for extreme rainfall not only operate at regional
to continental but also at global scales (63). In particular, atmo-
spheric Rossby waves can be identified as dominant transcon-
tinental processes. The forecasting potential of continental and
global synchronization patterns for extreme rainfall has, so far,
only been systematically assessed in a few cases and should
be exploited for other regions. Moreover, extreme-rainfall tele-
connection patterns determined from observational data can, in
principle, yield a methodological framework to benchmark and
constrain atmospheric general circulation models with respect to
their capability to reproduce these patterns.

Indian Summer Monsoon
The Indian summer monsoon is an intense rainy season lasting
from June to October. The monsoon delivers more than 70%
of the country’s annual rainfall, which is the primary source of
freshwater for India.Although the rainy seasonhappenseveryyear,
the monsoon onset and withdrawal dates vary within a month from
year to year. Such variability greatly affects the life and property
of more than a billion people in India, especially those living in
rural areas and working in the agricultural sector, which employs
70% of the entire population. Only Kerala in South India receives
an official monsoon forecast (64) 2 wk in advance, while the other
28 states rely on the operational weather forecast of about 5 d
(64). The demand for an earlier monsoon forecast is highest in
central India, which is most exposed and vulnerable to droughts
beforethemonsoononset.Moreover,while,underclimatechange,
severe storms and floods during the monsoon withdrawal are
becoming more frequent, there is, currently, no official forecast
for the withdrawal date.

Exploratory network-based analyses of extreme rainfall across
the Indian subcontinent (42, 43) enabled the identification of
geographical domains displaying far-reaching links, influencing
distant grid points. Especially north Pakistan and the Eastern Ghats
turn out to be crucial for the transport of precipitation across the
subcontinent (43).

The combination of the network-based analysis and nonlinear
dynamics in the tipping elements approach (44) allowed uncov-
ering of the critical nature of the spatiotemporal transition to
the monsoon. It was found that the temporal evolution of the
daily mean air temperature and relative humidity exhibit critical
thresholds on the eve and at the end of the monsoon. The
spatial analysis of the critical growth of the fluctuations (65) in the
weekly mean values of the same variables revealed the same two

geographical areas with maximum fluctuations (Fig. 4 A–C): the
Eastern Ghats and north Pakistan. A highly developed instability
occurring in these regions creates the conditions necessary for
the spatially organized and temporally sustained monsoon rainfall.
Thus, the two critical regions appear to play the role of the tipping
elements of the monsoon system. The most interesting feature is
how the tipping elements are connected: On the eve of the onset
and the withdrawal of the monsoon in the central part of India, the
temperatureandrelativehumidity intwotippingelementsequalize
(Fig. 4D). This insight creates the foundation for predictions of the
monsoon timing.

Based on this knowledge, a scheme was developed for fore-
casting the upcoming monsoon onset and withdrawal dates in
the central part of India 40 and 70 d in advance, respectively,
thus considerably improving the time horizon of conventional
forecasts (44). The new scheme has proven its skill (73% of onset
and84%ofwithdrawalpredictionscorrect)notonly in retrospective
predictions (for theyears1951–2015); ithasproventobesuccessful
in the prediction of future monsoons already 5 y in a row since its
introduction in 2016 (66). The methodology appears to be robust
underclimatechangeandhasprovenitsskillalsoundertheextreme
conditions of 2016, 2018, and 2019.

The approach creates new monsoon forecasting possibilities
aroundtheglobe, for instance, for theAfrican,Asian,andAmerican
monsoon systems. In particular, it also offers the possibility for
regional monsoon forecasting schemes, like the above one for the
central part of India.

Stratospheric Polar Vortex
The Northern Hemisphere extratropical stratosphere in boreal
winter is characterized by a westerly circumpolar flow, the SPV (67).
The strength of the SPV can influence the tropospheric midlatitude
circulation, and a weak SPV increases the chances of cold air
outbreaks there. Thus, extremely weak SPV states can lead to cold
spells in parts of North America and Eurasia. Given the rather
persistent surface impacts, the SPV is an important source of S2S
predictability for winter weather (68). To predict extremely weak
and strong SPV states, a climate network was constructed via
the Peter Clark Momentary Conditional Independence (PCMCI)
algorithm (45, 69) and has been successfully applied to identify
the precursor processes of these states.

While, in the previous climate network examples, nodes were
single grid points on the globe, in this approach, each node of the
network stands for an individual subprocess, and the links, derived,
for instance, from partial correlations, have a causal interpretation
(45, 46, 69, 70). A quantitative representation of a subprocess
(node) might be, for instance, the mean value of a physical quantity
over a particular spatial area (e.g., sea-level pressure anomalies
over the Ural Mountains region).

Then the aim is to estimate a directed network representation of
the regarded system’s subprocesses, that is, to identify which sub-
processes causally influence which other subprocesses (for details,
see ref. 69). This goal is addressed by discriminating between the
direct causal connectionsbetween thesubprocessesandspurious,
noncausal correlations (69, 70). The latter can arise due to common
causes of two regarded subprocesses, intermediate mediating
processes or autocorrelations in the subprocesses. The PCMCI
algorithm identifies those spurious correlations and removes them
from the network.

At the start of the SPV analysis, potential relevant variables
affecting vortex variability were expected in variables such as SSTs,
sea-level pressure, and lower stratospheric poleward eddy heat
flux.Fromthesefields, regionalprecursors indiceswerefirst formed
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D

A B C

Fig. 4. Tipping elements of the Indian summer monsoon: forecast of onset and withdrawal dates for 2019 (based on the methodology in ref. 44). The
tipping elements of the Indian summer monsoon are geographical regions in north Pakistan (NP) and the Eastern Ghats (EG), which are revealed by the
premonsoon growth of the variance σ2

T of fluctuations of the weekly mean values of the near-surface air temperature T, (A) 21 d, (B) 7 d, and (C) 1 d
before the monsoon onset in the EG. Two boxes, where σ2

T is maximal, show the location of the tipping elements. The composites of σ2
T and the

700-hPa winds (indicated by the blue lines) for the period 1958–2001 from the ERA40 reanalysis dataset (87) are shown in A–C. (D) Forecasting scheme of
the onset and withdrawal dates for central India in the EG region for 2019 based on daily mean near-surface (1,000 hPa) air temperatures (National
Centers for Environmental Prediction/National Center for Atmospheric Research) (54, 88) in 2019 in the EG (red) and NP (blue), and the previous 5-y
average temperature in the EG (purple) and NP (gray). Vertical gray lines represent the forecasted monsoon onset and withdrawal dates, which we call
the tipping points of the monsoon. The tipping points occur when the temperatures in the EG and NP (the tipping elements of the monsoon) become
equal, which happens twice during a year. At the end of May, the temperature in the EG decreases from its maximum value; then, it reaches a critical
threshold (Tonset), and an abrupt transition occurs—the temperature inevitably falls, and the rainy season begins in the EG region. At the same time, the
temperature in NP increases, and the two time series intersect at Tonset at the onset date of the monsoon in the EG. In October, when the temperature in
NP falls below Tmonsoon at the second intersection of the two time series, the monsoon withdraws from the EG. This feature allows estimation of the
dates when the two critical temperatures (Tonset and Tmonsoon) are reached and forecasting of the onset and withdrawal dates of the monsoon. (See
details in ref. 44.) The daily precipitation in the EG region obtained from National Oceanic and Atmospheric Administration (89) is shown superimposed
in light blue. The sudden increase and decrease in precipitation coincide with the monsoon period defined by the light blue band. The results of
forecasts for the period 2016–2020 are presented in ref. 66. The Inset in D illustrates the locations of NP and the EG. Portions of figure reprinted with
permission from ref. 44, John Wiley and Sons, copyright American Geophysical Union.

by cross-correlating the fields against the SPV time series and
then averaging over the significantly correlated regions. In the
next step, these precursors indices were then evaluated using the
PCMCI algorithm for their causal interactions. Thus, while domain
knowledge was crucial to choose the input variables, selecting the
exact precursor regions as well as identifying and quantifying the
involved causal processes was done using the algorithm described
in refs. 46 and 70, which yields statistically more reliable estimates
than relying on Granger causality (69).

The algorithm enabled the prediction of SPV behavior with
predictive skill up to 45 d for extreme 15-d-mean events (46).
For instance, the scheme hindcasts 58% of the extremely weak
polar vortex states with a lead time of 1 d to 15 d and a false
alarm rate of only about 5%. Dynamical forecast methods can
provide predictability up to 30 d for daily events, so-called sudden
stratosphericwarmings,butthepredictionleadtimevariesstrongly
for individual events and is usually much shorter (71).

This approach of reconstructing causal interactions is a powerful
tool in Earth system sciences (70): It can be applied to test specific

hypotheses about interaction mechanisms or to weigh the impor-
tance of components as gateways for spreading perturbations in
the network. But it also offers a novel approach to prediction: For
prediction targets as different as the amount of Indian summer
monsoon rainfall (72) and seasonal Atlantic hurricane activity (73),
precursors with lead times of several months could be identified.
Additionally, the algorithm also allows more process-based model
evaluations (74) beyond simple correlation analyses to understand
potential biases in representing teleconnection pathways. This
might, in particular, be useful in the form of hybrid forecasts (75)
which combine numerical models with statistical methods.

The PCMCI algorithm is particularly useful if the main goal is
understanding the underlying mechanisms of different processes
by reconstructing causal relationships hidden in correlations of
observed data. The algorithm requires sufficient domain expertise
to optimally preselect the variables and processes of the phe-
nomena one is interested in and can be sensitive to different
parameter settings. Although causal discovery algorithms have
been successfully applied to high-dimensional settings as well
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(including the here discussed SPV case; see also refs. 69 and 76),
a low-dimensional, parsimonious set of variables representing the
considered mechanisms is often beneficial to reduce the number
of statistical independence tests in order to assure interpretability
of results. Incontrast, complexcorrelationnetworksprovideamore
explorative approach, helping to detect patterns in large high-
dimensional data, which can give rise to new hypotheses, which
could, in turn, be tested with the PCMCI approach.

Climate Networks and Artificial Neural Networks
Extendingtheavenues forclimatephenomenaforecastingbeyond
numerical modeling is not limited to climate network theory.
Artificial neural networks (ANNs), and especially their currently
most popular application, deep learning (77, 78), are inspired
by the functioning of the brain and are also composed of nodes
(“neurons”),whichareconnected(linked)toothernodes.However,
the similarity to climate networks is primarily structural: In climate
networks, the individual nodes represent grid locations or physical
processes, thereby creating an alternative description of the physi-
cal world. By contrast, the nodes in ANNs and their links (the ANN’s
architecture)have,generally,nophysicalmeaning,andthelink (and
bias)weights, trainedonthedata, createan internal representation
of useful aspects of the physical world. If enough training data
have been presented to a suitable ANN, it is able to capture
characteristics of the underlying system and make predictions. For
instance,deep learninghasbeen recentlyproposedto forecast the
ENSO (79) and the amount of Indian summer monsoon rainfall (80).
Furthermore, ANNs and other machine learning techniques have
been successfully applied to a wide range of weather and climate
questions and can be powerful tools for tackling climate change;
see ref. 81 for a detailed review. However, an issue at the forefront
of research remains the black box character of ANNs (82), although
promising advances toward explainable or interpretable artificial
intelligence have recently been made (83).

WebelievethatclimatenetworkanalysesandANNscangainfully
combine (37, 84). The ANNs’ strength of being able to learn
complex nonlinear relationships in the presented data and the
climate networks’ ability to identify and compress/merge spatially
dispersed information about cooperativity and their potential to
provide a physical interpretation makes them well-fitting comple-
ments for climate phenomena forecasting.

Outlook
The above (incomplete) list of successful applications of network
theory to climate phenomena demonstrates the potential of this
approach. We argue that it complements established concepts
and schemes with a new possibility to reveal precursor processes
orevenentirecausalchainsofclimatephenomena.Network theory
applied to climate science is still in its infancy and the subject of
ongoing research. The analyses of complex climate phenomena
such as the ones discussed above require individual case-by-case
approaches, and there are no simple general recipes yet. Climate
networks are versatile tools for exploratory analysis to uncover
spatial and temporal patterns in the data, which may potentially
lead, with domain expertise, to new forecasting methods.

The examples highlighted in this perspective can, however,
serve as useful analogies/templates for a network-based forecast-
ing of climate phenomena that are similar to them. For instance,
the example of El Niño can serve as a template to forecast
other large-scale cooperative phenomena like the Indian Ocean
Dipole or the Atlantic El Niño. As in the case of the Amazon
droughts, the quantification of the impacts of SST patterns on
rainfall anomalies over adjacent continents should be possible also

forother tropical regionswhere land–oceantemperaturegradients
drive moisture flow and hence rainfall anomalies. The approach
developed for the extreme rainfall prediction in the Central Andes
should be applicable also to other regions where interactions
between subtropical and extratropical weather phenomena are
relevant, such as in North America or eastern Asia. Developed
for forecasting the Indian summer monsoon, the tipping elements
approach is applicable to other climate and weather phenomena
that exhibit a critical transition. In particular, it could be applied to
othermonsoonsystems inWestandEastAfrica,andalsoNorthand
South America. Finally, the PCMCI algorithm is particularly useful if
theprimarygoalofananalysis isanunderstandingoftheunderlying
mechanisms of a regarded phenomenon.

Network theoryapplied toclimatescience is rapidlydeveloping,
but there are still open challenges in the realm of application, as
well as challenges of a methodological nature.

Since climate networks are constructed from observational data
via similarity measures, for example, correlations, their underlying
physical processes may not be immediately apparent. Uncovering
the physical processes can lead to a better understanding of the
regarded system, which could translate into better predictions
within the network framework or improved numerical models.
Causally interpretable networks and machine learning techniques
could be instrumental in uncovering the underlying processes.
As recently argued regarding the role of theory in modeling-
dominated climate science (85), a delicate balance between, and
a skillful combination of, observations, theory, and application-
driven simulations (be it through numerical modeling or network
methods, or, rather, both) may provide the best path forward.

Then, there are some challenges related to the data itself: First,
as an entirely data-dependent approach, network analysis may be
subject to the underlying uncertainty in the data. Based on experi-
ence, the network-based schemes appear to be robust (see, e.g.,
ref. 32), and, in practice, data uncertainty might not be a significant
issue. However, this remains to be studied systematically.

Another concern is how to incorporate multivariate datasets.
Mostcurrentapproachesconstructclimatenetworksbyrelyingona
single physical quantity, for example, temperature or precipitation
data.For instance, reanalysisdatasetsofferawiderangeofphysical
quantities at each grid point. Exploiting multivariate networks,
also called multilayer networks, can enable new ways for both
understanding the underlying phenomena and finding improved
prediction schemes.

Newreanalysisdata, forexample,EuropeanCentre forMedium-
Range Weather Forecasts Re-Analysis 5 (ERA5) (86), which create
ensembles of plausible trajectories instead of only a single one,
as previous products mostly did, may improve predictions, for
example, when uncertain input data can be identified and possibly
omitted or down-weighted. Also, robustness tests for the predic-
tion methods to intraensemble uncertainties are now becoming
feasible.Climatenetworksareoftenconstructedonlybasedonone
assimilation product, often due to the lack of viable alternatives,
and, in the future, systematic interdataset comparisons would be
desirable.

Apart from these “data uncertainty problems,” there is also the
case where there is not enough data available: For instance, how
can the often short observational records be dealt with? This is
especially relevant for extreme events, which are, by definition,
rare, and only a few extreme events might be on record to validate
morecomplexpredictionmodelsbasedonnetworkcharacteristics.
Possible solutions could be applying the prediction methods from
network theory to the output of general circulation model (GCM)
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runs or validating on corresponding phenomena at different
geographical locations. Additionally, long paleoclimatological
records, for instance, tree-ring or coral-based reconstructions,
could provide opportunities to validate complex prediction mod-
els. Finally, when looking into the future of the method itself, does
climatechangeimpactaforecastingscheme,anddoesitneedtobe
extended accordingly, for example, by evolving networks? Statisti-
cal prediction methods, in general, entail stationarity assumptions,
which may or may not be fulfilled in a changing climate, where un-
precedentedconfigurationscouldappear.Applyingtheprediction
schemes to GCM future scenario outputs or an understanding of
a method’s underlying processes could reveal whether and how
schemes should be modified.

Most importantly, and despite all these standing challenges,
network analysis can serve both as a toolbox to develop early-
warning schemes as well as concrete leads or as a scientific
inspiration for identifying physical mechanisms that relate spatially
and/or temporally distant observations, where no connection was
suspected before.

These first successes encourage us to invite the research com-
munity to intensively investigate the applicability of the network
approachtoclimatedynamics,butalso tootherdata-richproblems
of a nonlocal nature. We are confident that, based onnetwork

approaches, critical advances are possible in the understanding
and prediction of emerging phenomena, with topics ranging from
jetstreamdynamics,seaicemelting,andearthquakestoepidemics
containment and physiological systems collapse.

Data Availability. There are no data underlying this work.
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